Real-world use cases
Unlocking hardware-efficient quantum gates with the ‘Rosetta stone’ of code
Boulder Opal enabled precision control of trapped-ion vibrations, realizing error-correctable qubits in a compact, hardware-efficient form.
2 in 1
Achieved 2 error-correctable logical qubits in 1 atom, reducing hardware demand and enabling scalable, hardware-efficient quantum processing.
Effectively, we store two error-correctable logical qubits in a single trapped ion and demonstrate entanglement between them. We did this using quantum control software developed by Q-CTRL, with a physics-based model to design quantum gates that minimise the distortion of GKP logical qubits, so they maintain the delicate structure of the GKP code while processing quantum information.
Nord Quantique is accelerating the path to useful quantum error correction with Boulder Opal
Nord Quantique used Boulder Opal to design a hardware-efficient QEC protocol for a superconducting system where quantum information is encoded in GKP states.
14%
increase in logical qubit lifetime
Given the complexity of the physics at play, being able to perform closed-loop optimization of a few physically motivated parameters of the quantum error correction protocol with Boulder Opal is very valuable to us.

Enabling data loading for quantum machine learning with Fire Opal
BlueQubit demonstrated groundbreaking loading of complex distribution information onto 20 qubits for a QML application by using our error suppression product.
8X
Better performance in terms of Total Variational Distance (TVD), which measures the deviation from perfect data loading.
As we develop novel techniques to solve some of the quantum industry’s hardest challenges, Fire Opal is an essential tool to reduce the impact of hardware noise and demonstrate successful results with deeper and wider circuits.
Northwestern looks to the heart of the universe with robust quantum sensors
With Boulder Opal, Northwestern suppressed 5 different noise sources simultaneously with a single optimized robust control pulse for atom interferometry.
5
different noise sources can be suppressed simultaneously with a single optimized robust control pulse for atom interferometry.
The breadth and flexibility of Boulder Opal allowed us to create our own optimization scenario and obtain pulses robust to the five most relevant experimental noise sources at the same time! This will be crucial in the development of atomic interferometers to detect dark matter and gravitational waves at currently unexplored frequencies.