Our work

Positioning, navigation, and timing

Delivering the most advanced PNT solutions with quantum advantage.

As featured in
The New York Times

Address the number one strategic threat

We develop solutions that brings robustness to logistics, supply chains, and telecommunications networks powered by quantum technology that addresses the number one strategic threat.

GPS denial is widely recognized as the most significant vulnerability faced by allied nations. For example, a short five-day outage in the UK alone is estimated to cost nearly $7 Billion; a broader outage could jeopardize communications networks, oceanic shipping, and autonomous vehicles. GPS denial on the battlefield poses a major risk to friendly forces.

Deliver precise dead-reckoning navigation

Quantum-enabled PNT is the future of navigation. The unreliability of GPS in urban environments, high latitudes, subsurface settings, and contested battlefields mandates new approaches to navigation.

We have has partnered with Advanced Navigation, a world-leader in AI-enhanced inertial navigation systems, to offer our users an ultra-high performance quantum PNT system that opens a new frontier in navigation undersea, land, and outer space.

Navigate with and generate geophysical maps

The earth has a unique fingerprint that’s invisible to the naked eye. Both gravity and magnetic fields vary locally and provide unique terrain maps enabling precise navigation even under the most demanding circumstances.

Q-CTRL’s software-ruggedized gravimeters and magnetometers enable high-accuracy mapping and map matching on mobile platforms - from sea to air. And combined with proprietary algorithms we can help you turn sensor insights into mission capabilities.

Protect networks with enhanced quantum clocks

Deliver greater value and improved usability to your end-users and improve the competitiveness of your platform using tools validated to improve algorithmic success up to 9,000x and to directly increase quantum volume on real hardware.

Through patented techniques to improve the stability of passive frequency standards and phase-lock-loops using machine learning, we help you deploy software solutions that deliver enhanced clock performance without the need to change your hardware.

Real-world use cases

Nord Quantique

Nord Quantique is accelerating the path to useful quantum error correction with Boulder Opal

Nord Quantique used Boulder Opal to design a hardware-efficient QEC protocol for a superconducting system where quantum information is encoded in GKP states.

14%

increase in logical qubit lifetime

Read the case study

Given the complexity of the physics at play, being able to perform closed-loop optimization of a few physically motivated parameters of the quantum error correction protocol with Boulder Opal is very valuable to us.

Dany Lachance-Quirion
VP of Quantum Hardware
,
Nord Quantique
Australian Army

Improving Army logistics with quantum computing

With Fire Opal, the Australian Army tested and validated a quantum computing solution on real hardware that promises to outperform their existing methods.

12X

improvement in the likelihood of finding an optimal solution with Fire Opal over the default hardware execution

Read the case study

Optimally routing 120 convoys can take more than a month of classical computation. The Australian Army is evaluating the potential of quantum computing to provide improvements; however, it’s been difficult to validate the feasibility of a quantum solution due to hardware noise. With Fire Opal, an algorithmic enhancement software, we are able to achieve results on quantum computers that build confidence in our quantum roadmap.

Marcus Doherty
Australian Reserve Officer
,
Australian Army
Blue Qubit

Enabling data loading for quantum machine learning with Fire Opal

BlueQubit demonstrated groundbreaking loading of complex distribution information onto 20 qubits for a QML application by using our error suppression product.

8X

Better performance in terms of Total Variational Distance (TVD), which measures the deviation from perfect data loading.

Read the case study

As we develop novel techniques to solve some of the quantum industry’s hardest challenges, Fire Opal is an essential tool to reduce the impact of hardware noise and demonstrate successful results with deeper and wider circuits.

Hayk Tepanyan
Chief Technology Officer
,
Blue Qubit
Q-CTRL Partner

Reducing quantum compute costs 2,500X with Fire Opal

With Fire Opal a financial company was able to run algorithms on more cost-effective hardware systems while achieving results comparable to more premium systems

>2,500X

Reduction of quantum compute cost

Read the case study

We wanted to challenge Fire Opal’s capabilities by running a quite complex, unoptimized circuit. The results were extremely promising. The only comparable results we’ve seen have come from hardware that is currently too expensive to run extensive tests on.

Dr. Valtteri Lahtinen
Chief Scientific Officer
,
Q-CTRL Partner

Get started now

Make quantum technology useful
Alice & BobAtom ComputingChalmers UniversityIBM QuantumImperial College LondonION QNorthwestern UniversityRigetti