Real-world use cases
Improving quantum education outcomes with Black Opal at the University of Hull, UK
Enhancing student engagement and real-world understanding in quantum computing through intuitive and interactive learning with Black Opal.
85%
of students reported that Black Opal improved their overall learning outcomes when used alongside their university syllabus, and would recommend its use in future courses.
Students who engaged with Black Opal as an active companion resource significantly boosted knowledge retention and ultimately understanding. Some of them even engaged further with quantum computing by choosing a final-year project in that field.
Nord Quantique is accelerating the path to useful quantum error correction with Boulder Opal
Nord Quantique used Boulder Opal to design a hardware-efficient QEC protocol for a superconducting system where quantum information is encoded in GKP states.
14%
increase in logical qubit lifetime
Given the complexity of the physics at play, being able to perform closed-loop optimization of a few physically motivated parameters of the quantum error correction protocol with Boulder Opal is very valuable to us.

Enabling data loading for quantum machine learning with Fire Opal
BlueQubit demonstrated groundbreaking loading of complex distribution information onto 20 qubits for a QML application by using our error suppression product.
8X
Better performance in terms of Total Variational Distance (TVD), which measures the deviation from perfect data loading.
As we develop novel techniques to solve some of the quantum industry’s hardest challenges, Fire Opal is an essential tool to reduce the impact of hardware noise and demonstrate successful results with deeper and wider circuits.
Northwestern looks to the heart of the universe with robust quantum sensors
With Boulder Opal, Northwestern suppressed 5 different noise sources simultaneously with a single optimized robust control pulse for atom interferometry.
5
different noise sources can be suppressed simultaneously with a single optimized robust control pulse for atom interferometry.
The breadth and flexibility of Boulder Opal allowed us to create our own optimization scenario and obtain pulses robust to the five most relevant experimental noise sources at the same time! This will be crucial in the development of atomic interferometers to detect dark matter and gravitational waves at currently unexplored frequencies.