Our work

Quantum computing

A new way to process information using the laws of physics

Unlock real-world quantum computing, 1,000x faster

Quantum computers have the potential to solve problems that are practically impossible on even today’s supercomputers. But before this cutting edge technology can achieve the first commercial demonstration of quantum advantage, quantum computers will need to become much more capable.

We tackle the biggest challenges that the quantum computing industry faces and improve performance by over 1,000X. We do this by unlocking enhanced performance at scale and helping customers bring solutions to market more efficiently — ensuring quantum computing delivers real value to end users.

Solutions for research

Build the future of quantum computing

Errors are the Achilles Heel of quantum computers. Dealing with them is our mission. Making quantum computing useful starts at the bottom of the stack at the hardware-software interface.

We have pioneered the development of quantum firmware to stabilize quantum hardware and build autonomy, so benefits flow all the way to end users. And we provide advanced R&D tools to help you realize this layer.

Boulder Opal provides everything you need to improve and automate the performance of hardware for quantum computing - empowering R&D teams to accelerate roadmaps and release more capable hardware.

This means greater computational capabilities, delivered sooner.

Solutions for algorithm developers

Find illumination from algorithms run on quantum processors with automated error suppression

Suppressing errors requires a deep understanding of the physical and engineering details of quantum hardware. It has been a specialist’s game, limited to a handful of research teams who could make quantum processors achieve things few others could.

Algorithm developers and researchers have been stuck with inferior performance, slowing them down.

Most quantum computer programmers just want the hardware to perform better - that’s exactly what we deliver.

Fire Opal is an out-of-the-box solution for minimizing error and boosting algorithmic success on quantum computers. It delivers effective error suppression technology for quantum computers as a simple, fully automated solution suitable for any user.

Leverage Fire Opal across supported quantum processors to gain meaningful insights from today's quantum hardware that were previously impossible to achieve.

Independently validated to demonstrate up to 9,000x performance improvement over existing techniques, Fire Opal maximizes the success of quantum algorithms without any user intervention, hardware knowledge, or configuration required.

Solutions for platform vendors

Unleash latent performance in quantum hardware

Deliver greater value and improved usability to your end-users and improve the competitiveness of your platform using tools validated to improve algorithmic success up to 9,000x and to directly increase quantum volume on real hardware.  

Q-CTRL Embedded delivers effective error suppression technology for quantum computers as a simple, fully automated solution integrated directly into your hardware platform.

It builds on your existing stack and interface, offering customers a performance-managed solution that gives maximum achievable performance for their algorithms - all with zero settings or configuration.

Q-CTRL Embedded offers a comprehensive workflow from algorithm input in a supported intermediate representation (QASM), and invisibly delivers optimal compilation, error-aware transpilling, and effective error suppression.

With advanced AI-driven gate optimization, circuit-level error suppression, and measurement-error mitigation, Q-CTRL Embedded automatically optimizes any quantum circuit's execution on your hardware, enabling new outcomes for your users that were previously out of reach.

Real-world use cases

>180X
This groundbreaking application of autonomous quantum sensors in space exploration will be invaluable in leveraging extraterrestrial resources to establish permanent human bases on the Moon, Mars and beyond.
Steven Marshall, Premier of South Australia
>10X
We used Qiskit Pulse and Q-CTRL’s Boulder Opal to run error-robust quantum gates on a five-qubit IBM Quantum Canary processor delivering better value for users
>200X
We could see all trains, busses, ferries, trams and motorways essentially ‘talking to each other’ to find out where customers are and deploy resources where needed.
Andrew Constance, Minister for Transport and Roads
<1PPM
The team at Q-CTRL was able to rapidly develop a professionally engineered machine learning solution that allowed us to make sense from our data and gain real insights into how to improve our hardware.
Dr. Cornelius Hempel
>8X
It was really easy to go from code to experiments and it simply worked! We’re now using Q-CTRL pulses that allow us to cut the time of our gates by eight times.
Marina Kudra, PhD student at Chalmers
7X
Q-CTRL’s work has the potential to significantly improve algorithmic performance and hardware stability in quantum processors.
Alex Hill, Rigetti
5
The breadth and flexibility of Boulder Opal allowed us to create our own optimization scenario and obtain pulses robust to the five most relevant experimental noise sources at the same time!
Zilin Chen, Postdoc at Northwestern University
>2,500X
We wanted to challenge Fire Opal’s capabilities by running a quite complex, unoptimized circuit. The results were extremely promising. The only comparable results we’ve seen have come from hardware that is currently too expensive to run extensive tests on.
Dr. Valtteri Lahtinen, Chief Scientific Officer & Co-Founder at Quanscient
12X
Optimally routing 120 convoys can take more than a month of classical computation. The Australian Army is evaluating the potential of quantum computing to provide improvements; however, it’s been difficult to validate the feasibility of a quantum solution due to hardware noise. With Fire Opal, an algorithmic enhancement software, we are able to achieve results on quantum computers that build confidence in our quantum roadmap.
Marcus Doherty, Army Research Officer, SO1 Quantum Technologies, Australian Army
14%
Given the complexity of the physics at play, being able to perform closed-loop optimization of a few physically motivated parameters of the quantum error correction protocol with Boulder Opal is very valuable to us.
Dany Lachance-Quirion, VP Quantum Hardware

Get started now

Make quantum technology useful