Our users

Quantum hardware researchers

Build the quantum future faster. We enable hardware researchers to push their work to the leading edge.

Solutions for cloud quantum computing providers

Integrate quantum error correction into the most advanced quantum computing platforms

Quantum control is the critical enabling technology that’s powering the future of hardware - from quantum sensing to quantum computing. Susceptibility to noise and error limits the range of achievable algorithms running on quantum coherent hardware.

We enable quantum error correction from the device level up and deliver the AI-driven hardware automation needed to realize the true abstraction of a quantum computer.

The world’s leading engineering teams rely on our infrastructure software and professional services to build error robustness and error correction into their systems, enabling them to deliver quantum advantage to their users.

Maximize hardware performance

R&D teams gain an advantage using our quantum control infrastructure software

>10X

Cost-savings for
platform providers

>10X

System stability

>10X

Device homogeneity

>10X

Computational speed

Solutions for quantum R&D teams

The most powerful tools for automation and acceleration at the device level

We work with research teams to build stable and reliable quantum hardware without being held back by noise and hardware errors or labor-intensive manual operations.

We offer a complete suite of solutions that automate and accelerate the operation of quantum hardware - from computing to clocks, sensing to metrology. We focus on flexibility and convenience, delivering real value with minimal user effort.

Whether designing fast quantum logic gates with optimal control, combatting platform noise in a cold-atom sensor, or using AI to automate quantum computation hardware tuneup and calibration, our tools help users move faster and achieve more.

Real-world use cases

Nord Quantique

Nord Quantique is accelerating the path to useful quantum error correction with Boulder Opal

Nord Quantique used Boulder Opal to design a hardware-efficient QEC protocol for a superconducting system where quantum information is encoded in GKP states.

14%

increase in logical qubit lifetime

Read the case study

Given the complexity of the physics at play, being able to perform closed-loop optimization of a few physically motivated parameters of the quantum error correction protocol with Boulder Opal is very valuable to us.

Dany Lachance-Quirion
VP of Quantum Hardware
,
Nord Quantique
Australian Army

Improving Army logistics with quantum computing

With Fire Opal, the Australian Army tested and validated a quantum computing solution on real hardware that promises to outperform their existing methods.

12X

improvement in the likelihood of finding an optimal solution with Fire Opal over the default hardware execution

Read the case study

Optimally routing 120 convoys can take more than a month of classical computation. The Australian Army is evaluating the potential of quantum computing to provide improvements; however, it’s been difficult to validate the feasibility of a quantum solution due to hardware noise. With Fire Opal, an algorithmic enhancement software, we are able to achieve results on quantum computers that build confidence in our quantum roadmap.

Marcus Doherty
Australian Reserve Officer
,
Australian Army
Blue Qubit

Enabling data loading for quantum machine learning with Fire Opal

BlueQubit demonstrated groundbreaking loading of complex distribution information onto 20 qubits for a QML application by using our error suppression product.

8X

Better performance in terms of Total Variational Distance (TVD), which measures the deviation from perfect data loading.

Read the case study

As we develop novel techniques to solve some of the quantum industry’s hardest challenges, Fire Opal is an essential tool to reduce the impact of hardware noise and demonstrate successful results with deeper and wider circuits.

Hayk Tepanyan
Chief Technology Officer
,
Blue Qubit
Q-CTRL Partner

Reducing quantum compute costs 2,500X with Fire Opal

With Fire Opal a financial company was able to run algorithms on more cost-effective hardware systems while achieving results comparable to more premium systems

>2,500X

Reduction of quantum compute cost

Read the case study

We wanted to challenge Fire Opal’s capabilities by running a quite complex, unoptimized circuit. The results were extremely promising. The only comparable results we’ve seen have come from hardware that is currently too expensive to run extensive tests on.

Dr. Valtteri Lahtinen
Chief Scientific Officer
,
Q-CTRL Partner

Get started now

Make quantum technology useful
Alice & BobAtom ComputingChalmers UniversityIBM QuantumImperial College LondonION QNorthwestern UniversityRigetti